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Abstract. We point out that the field theoretical description of the localisation transition 
exhibits anomalous scaling for the moments of the probability density at the localisation 
threshold. This property hints at a multifractal structure of the wavefunction. We attempt 
an analysis of the corresponding singularity distribution. 

One of the most exciting features of strange objects appearing in condensed matter 
physics is multifractality (Mandelbrot 1974, Frisch and Parisi 1983, Benzi et a1 1984), 
namely the coexistence of several populations of singularities in measure, each occupy- 
ing a set of non-trivial fractal dimension. This feature has been observed in such 
diverse objects as the energy dissipating set in fully developed turbulence (Frisch and 
Parisi 1983, Benzi et a1 1984), strange attractors in dynamical systems (Benzi et a1 
1984, 1985, Halsey et a1 1986, Jensen et a1 1985, Paladin and Vulpiani 1986) and the 
growth site distribution in diffusion-limited aggregates (Turkevitch and Scher 1985, 
Halsey et a1 1985). A similar feature is shared by the anomalous voltage distribution 
in random resistor networks at the percolation threshold (de Arcangelis et a1 1985). 
One usually makes this property apparent by considering the anomalous scaling 
behaviour of the moments of the measure describing the mass distribution of the object, 
coarse grained over cells of linear size 1, in the limit of small 1. Following Jensen et 
a1 (1985), let us consider a set of N points of the object, sampled with a probability 
proportional to its mass density. We can estimate the probability p , ( l )  that a point 
chosen at random belongs to the ith cell of linear size 1, by computing N i / N ,  where 
Ni is the number of points belonging to the ith cell, in the limit of large N We then 
compute the qth moment of p , ( l )  by averaging over the cells: 

r( q, I )  = ( p i (  I ) ¶ - ’ )  - P. 

T ( 4 )  = ( 4  - 1)D. 

(1) 

(2) 

In the case of a homogeneous fractal of fractal dimension D one has 

Deviations of T (  q )  from the linear behaviour (2) indicate the appearance of multifrac- 
tality. If one assumes that the fractal can be described as an interwoven family of 
singularities of type a (where a is defined by p i ( a )  - I“ around a singularity of type 
a), each distributed over a set of fractal dimension f ( a ) ,  it is possible to relate f ( a )  
to T ( q )  by means of a Legendre transformation (Frisch and Parisi 1983, Benzi et a1 
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1984, Hentschel and Procaccia 1983, Halsey et a1 1986). The interest of this transforma- 
tion lies in the universality off(  a) and of the range [ umin, amax] to which a may belong. 

We wish to point out in this letter that one finds anomalous scaling of the moments 
of the probability distribution in the context of the theory of Anderson localisation. 
Wegner (1980)  showed indeed, by means of field theoretical renormalisation group 
techniques, that the quantities P ( , ) ( E )  (defined below), which can be considered as 
some form of these moments, scale with an infinite hierarchy of exponents which are 
not simply related to each other. The P ‘ q ’ ( E ) ,  considered as a function of the energy 
E near the localisation threshold E , ,  are defined by 

where +, (r)  is the amplitude of the localised wavefunction IA) with energy e, at site 
r in a tight-binding model with a random potential, p ( E )  is the density of states per 
site and energy, and the average is taken with respect to all realisations of the potential. 
He obtained the following behaviour of the P ( q ) :  

( 4 )  P ( q  E )  - (6( E))-”q 

where 6 (which itself behaves like ( E c -  E ) - ” )  is the localisation length. The exponents 
xq are given by 

X, = ( q -  1 ) d  - q ( q -  1 ) ~  + O ( E ~ ) .  ( 5 )  

Here d denotes the dimensionality of ambient space, which is taken to be equal to 
2 + ~ ,  with a small E.  One obtains therefore an infinite sequence of independent 
exponents, contrary to the usual situation in critical phenomena. This is related to the 
existence of an infinite number of relevant perturbations to the fixed point Hamiltonian 
of the non-linear v model in two dimensions (BrCzin et a1 1976a). 

In the following we attempt to relate the behaviour of the ,‘“’(E) to a multifractal 
structure of the wavefunction near the localisation threshold. Let us make the 
hypothesis that only one ‘typical’ wavefunction qE contributes essentially to P C q ) (  E ) .  
Since qE is different from zero for length scales up to 6 and then rapidly decays, we 
can relate P ( q ) ( E )  to the averaged moments of the wavefunction, summed over a box 
of linear size 6: 

In the spirit of scaling theory, the same quantity, evaluated for a probability density 
coarse grained over a box of linear size 1, should scale like ( 6 / 1 ) - ” q ,  since the lattice 
constant is 1 times larger. This allows us to identify x, (equation ( 5 ) )  with T ( q )  
(equation ( 1 ) ) .  If we now extend (5) to encompass non-integer values of q, we apply 
a Legendre transformation to obtain f( a): 

We thus obtain the result 

f ( a )  = d - ( 4 ~ ) - ’ ( d  + E - ~ ) * + O ( E ’ ) .  ( 8 )  
This function has the characteristic parabolic shape of that found by Jensen et a1 
(1985) ,  and its maximum value is d, the space dimensionality, as it was reasonable to 
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expect, since the support of the function should be the whole lattice (up to distances 
of order 6). One should however reject values of f ( a )  smaller than zero, given its 
interpretation as a fractal dimension. One would then retrieve information on the 
allowed range of a, were it not for the fact that the bounds of this range correspond 
to values of q too large (positive and negative) for the result of the E expansion ( 5 )  
to be trusted. 

Let us remark that the same non-linear U model with an n-component order 
parameter which, in the limit n + 0, describes Anderson localisation describes instead, 
for n > 2, a Heisenberg-type critical point. In this case, the quantities analogous to 
the P ( 4 ) (  E )  are (up to a normalisation factor) the moments of the U (i.e. the z component 
of the order parameter). In this case, however, anomalous scaling is not observed. 
The scaling quantities correspond to the operators (BrCzin et a1 1976b) 

where Cln"")-'(x) are Gegenbauer polynomials orthogonal for the measure (1 - 
x')("-~)/* on the interval (-1,l). These scaling quantities are characterised by the 
scaling exponents 

(10) 
m(m+n-2)  E 5 = -  --+0(&2). 

2 n-2 m 

The moments of U are linear combinations of these scaling quantities. Their behaviour 
is dominated by the largest exponent. When n > 2 and m is an integer, the largest lm 
corresponds to the smallest value of m, which is zero for a generic polynomial even 
in U, or one for a polynomial odd in U. On the other hand, when n < 2 (and therefore 
for n + 0, which is the case of localisation), the largest 5, corresponds to the largest 
value of m, and P ( 4 ) ( E )  corresponds to a polynomial of degree 2q. All different 
exponents are therefore expected to appear. 

This letter suggests that it would be worthwhile to reconsider the numerical evidence 
proposed by Soukoulis and Economou (1984) (and challenged by Siebesma and 
Pietronero (1985)) for a fractal structure of the wavefunction in the localisation 
problem, in the light of the concepts of multifractality. Another interesting piece of 
numerical work which has some bearing on the present subject is due to Ioffe et al 
(1985), who have shown some evidence for an anomalous scaling behaviour of the 
moments of the participation ratio near the localisation threshold. It is difficult to 
relate these quantities to the P'q ' (E) ,  but this is a direction worth pursuing. 

We have shown, in conclusion, that some known results of the field theoretical 
approach to Anderson localisation hint at a multifractal nature of the wavefunction 
at the localisation threshold. This opens the way for the first time to an understanding 
of multifractality on the basis of analytical renormalisation group methods. 

The authors are grateful to A Coniglio, C Di Castro, L B Ioffe, H Kunz, G Parisi, 
L Pietronero and A Vulpiani for helpful discussions. 
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